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Abstract. Alternative ways are examined for represent-
ing a reaction field to treat the important effects of
long-range electrostatic interaction with a solvent in
electronic structure calculations on the properties of a
solute. Several extant boundary element methods for
approximate representation of the solvent reaction field
in terms of surface charge distributions are considered,
and analogous new methods for approximate represen-
tation in terms of surface dipole distributions are
introduced. Illustrative computational results are pre-
sented on representative small neutral and ionic solutes
to evaluate the relative accuracy of various methods.
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1 Introduction

The various influences of a solvent on a solute can be
broadly classified as being due to attractive electrostatic
and dispersion interactions along with repulsive cavita-
tion and exchange interactions. The electrostatic inter-
actions, which are the subject of this work, are of long
range and usually dominate in polar environments. It is
common and convenient to represent the electrostatic
interactions approximately using reaction field theory
[1-4] wherein the solvent polarization is treated by a
highly simplified model.

Excellent recent reviews are available covering both
theory and applications of reaction field methods in
connection with electronic structure calculations [5, 6],
so we will give only a cursory literature treatment here.
The present work focuses on methods that provide
approximate solutions of Poisson’s equation through
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reaction fields that are generated by certain apparent
surface distributions. For completeness, it should be
mentioned that several other kinds of reaction field
methods not considered here are also in common use.
These include related methods based on the generalized
Born equation [7-9], Langevin dipoles [10], and a direct
reaction field approach [11].

In reaction field theory the solute is envisioned as
nominally occupying a cavity that strictly excludes the
solvent. If the solute charge density is entirely enclosed
inside the cavity, then it is possible to represent the effect
of the classical reaction field exactly by a certain ap-
parent charge density lying on the surface of the cavity.
However, any unconstrained quantum mechanical cal-
culation on the solute inevitably leads to a tail of the
wave function extending outside the cavity. There is a
variety of reaction field implementations in the literature
that differ mainly in how the effect of this solute charge
penetration is treated.

Exact solution of Poisson’s equation to include the
effects of charge penetration can be achieved laboriously
by using both an apparent surface charge density lying
on the cavity surface and an apparent volume charge
density lying outside the cavity [12—18], as in the method
here denoted surface and volume polarization for elec-
trostatics (SVPE). In this work we consider several
simpler approximate solutions to this problem that in-
volve only apparent surface charge distributions, which
can be conveniently obtained in practice through solu-
tions based on boundary element approaches. These
include the method here denoted surface and simulation
of volume polarization for electrostatics [SS(V)PE] [14,
15, 19, 20-22] the integral equation formalism (IEF)
[23-26] and the conductor screening model (COSMO)
[27-34]. In SS(V)PE there is an optimal representation of
volume polarization in terms of a surface charge dis-
tribution, while in IEF and COSMO there is a more
approximate representation of volume polarization in
terms of a surface charge distribution.

For reference, we also consider the large group of
standard methods that we denote surface polarization
for electrostatics (SPE) which simply ignore volume



polarization effects. A large group of SPE implementa-
tions utilize boundary element approaches. Many of
them [35-46] represent the reaction field through ap-
parent surface charge distributions. A few SPE bound-
ary element approaches use a combination of apparent
surface charge and apparent surface dipole distributions
[47-50], or just apparent surface dipole distributions
[48]. Note that use of apparent surface dipole distribu-
tions [47-50] requires that different dipole distributions,
as well as volume polarization distributions, be used to
represent the solution in the different regions inside, on,
and outside the cavity in order to achieve a reaction
potential that is continuous across the cavity surface.
Still other SPE implementations avoid explicit display of
the underlying apparent surface distribution by using a
more direct means to represent the reaction potential
either through finite-element approaches [51-55] or by
use of multipole expansions [56-59].

The approximate SS(V)PE, IEF, COSMO, and SPE
methods can also be classified as particular variants of
the broad polarized continuum model (PCM) [60], as
will be discussed in detail later. The term PCM is also
usually understood to further imply certain kinds of
cavity construction, called GEPOL [61] or DefPol [62],
but in principle the specific cavity construction is largely
independent of the reaction field equation and solution
that is the main focus of the present work.

We also introduce here several new approximate
methods proposed as surface dipole analogs for each of
the SS(V)PE, IEF, COSMO, and SPE methods. These
can also be conveniently obtained in practice through
solutions based on boundary element approaches. The
general advantages and disadvantages of surface dipole
versus surface charge representations are compared and
discussed.

In the following ‘Theory’ section, a self-contained
outline is given of the formal equations defining the
various reaction field methods considered. The next
section on ‘Accuracy of approximate reaction field
methods’ reports some illustrative calculations to assess
in practice how well each of the approximate surface
distribution methods provides an accurate representa-
tion of the exact reaction field. The final section gives a
brief summary of the work and reviews the major
findings.

2 Theory
2.1 Notation for potentials and fields

The entire three-dimensional space is denoted by V. A
closed surface I' defines the cavity region strictly
excluding solvent and nominally enclosing the solute.
Thus, V is separated into regions V™ interior to the
cavity and V' exterior to the cavity. Points that may be
anywhere in V are denoted by r, while points that are
constrained to lie on I' are denoted by t. A point regarded
as lying on the interior face of I' is given by t™, and
similarly a point on the exterior face as t*!. The unit
vector parallel to the outward-directed normal to I' at tis
denoted as ny.
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The symbol ®(r) denotes an electrostatic potential.
All potentials in this work are assumed to be well be-
haved at the origin and regular at infinity. As detailed
later, different expressions apply for the electrostatic
potential depending on whether it arises from a volume
charge density, a surface charge density, or a surface
dipole density. Regardless of its source, a given elec-
trostatic potential ®(r) has an associated electric field
given by F(r) = —V®(r). The outward-directed normal
component of this field at any point on the surface I' is
Fu(t) = n¢ - F(t). In cases where the normal electric field
is discontinuous across the surface, we take its value on
the surface to be the average of its values Fy(t™) and
Fo(t*') at the respective points on the interior and
exterior faces.

A generic volume charge density p(r) defined
throughout all V has a total charge given by

ﬁ:/d3r’p(r’) :
v

which can be resolved into contributions interior and
exterior to the cavity

ﬁint — / d3l‘/p(l‘,) and l—)ext — / d3l‘/p(l‘/) ’
yint yext

so p= p" + p™t. A volume charge density source p(r)
produces the electrostatic potential

v = [ (L)

Provided that p(r) is well behaved, the associated
electric field is continuous everywhere. The normal
component of this field at any point on the surface can
be written as

0 1
0 _ 3.7 A
FR(t) /d rp(r)(ant |t_r,|) ;
\%

where the indicated normal derivative is given by
o 1 m-(t—r)
onglt—r] jt—rp?

Note that in previous work [21] the notation 0®”(t) was
used for what is here denoted as — F2(t).

A generic surface charge density of(t)
throughout all of I' has a total charge given by

6:/d2t'o(t’) ,
r

and produces the electrostatic potential

D7(r) = r/ d*t a(t) <ﬁ> :

Provided that a(t) is well behaved, the potential ®°(r) is
continuous everywhere, but the associated electric field
F?(r) is discontinuous in passing across I'. Its value at
any point on the surface is

defined
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A generic surface dipole density u(t) defined throughout
all of T" produces the electrostatic potential

wm—jfwngth.

Provided that u(t) is well behaved the associated normal
electric field component FX(t) is continuous across I,
although the potential ®*(t) itself is discontinuous in
passing across I'.

We will be especially concerned with the values of
potentials and fields at and near the cavity surface, so it
is convenient to adopt special notations for this case.
Thus, we define .% as the integral operator acting on a
generic surface charge density o(t) that produces on T’
the corresponding electrostatic potential, i.e.,

/¥ = RCE

We further define 2" as the integral operator acting on a
generic surface charge density o(t) that produces on T’
the corresponding negative normal component of the
electric field, i.e.,

T¥a(t) = / d%’o(t’)(a%'t_l—t,') = —F(t) .
r

The discontinuity of this normal field across I' can then
be expressed by

F*6(t) + 2na(t) = —F°(t™) and

F*a(t) — 2na(t) = —F7(t) .

Similarly, we define & as the integral operator acting on

a generic surface dipole density u(t) that produces on I
the corresponding electrostatic potential, i.e.,

Tu(t) = r/ d*t'u(t) (ait/ ﬁ) = D (t) .

The discontinuity of this potential across I' can then be
expressed by

Fu(t) — 2mu(t) = @*(") and

u(t) + 2mu(t) = O*(t) .

We note that &, 2%, and % are related through
99 =99, which is an example of an operator
relation that takes on specific meaning when each side

operates on some given surface distribution. The identity
operator is denoted .

2.2 Exact reaction potential

It is desired to determine the equilibrium reaction
potential ®™"(r) from some model of the solute—solvent
interaction. Here we treat the solvent as a homogeneous

linear isotropic dielectric continuum. The reaction
potential can then be obtained from a classical approach
based on Poisson’s equation in which the charge density
of the solute polarizes the solvent, leading to an
attractive potential energy due to the mutual electro-
static attraction between solute and bulk solvent. This
classical potential energy is given in atomic units by

nuc elec

ZZV(Drxn (R _ Z (Drxn(rn) ]

n

The influence of the solvent in back-polarizing the solute
can be treated by adding this potential energy to the gas-
phase solute Hamiltonian operator, #%*, that is used to
determine the solute electronic wave function. In a self-
consistent reaction field approach the mutual solvent
and solute polarizations are iterated until full equilibra-
tion.

Quantum mechanical calculation of the solute elec-
tronic wave function, ¥, determines the solute charge

elec

density via
253(r—rn) ‘P> .

p(r) = pM(6) + 7 (r)

nuc

:EZZ@%r—RQ—<W

S
In any one step of an iterative self-consistent reaction
field calculation, p(r) can be regarded as known and
fixed. The most fundamental expression used here for
the total solute—solvent interaction energy can be written
in terms of these quantities as

ﬂ/wxn .

&rn — <1P|a/rxn|\{;> _ /d3r/p(r/)q)rxn(r/) ) (1)
v

Other secondary expressions for ™", which are formally
equivalent to the fundamental expression in Eq. (1) only
under certain conditions, will be given later.

The free energy of solvation is given by

sol S o gas orX
AGOY = [<\I]|%ga§|\lj> _ égqs] +%ér no

Here the quantity in brackets on the right hand side
(RHS) represents the work of polarizing the solute. Note
that only half the solute-solvent interaction energy, ™",
contributes, because the other half is expended as work
in polarizing the solvent (assuming linear response).

The electrostatic potential ®”(r), which can be par-
titioned into @™ (r) + @™ (r), represents the potential
that the given charge density, p(r), would produce if
it were isolated in a vacuum, so it is the solution of
Poisson’s equation in a vacuum given by

V20 (r) = —4np(r) .

Together with the reaction potential it produces the total
electrostatic potential of the solute—solvent system

(Dtolal (l‘) — (l‘) 4 @mn (l‘) )

In this work we consider only the solvation energy
after full mutual equilibration between solute and sol-
vent is reached, and further assume zero ionic strength.
The solvent polarization is therefore characterized solely



by the experimental static dielectric constant, €, of the
bulk pure solvent. The polarizability of the solute is
automatically taken care of by the quantum mechanical
calculation of its wave function, so inside the cavity the
dielectric constant is taken as unity. Thus, Poisson’s
equation for the total electrostatic potential in the pre-
sence of a solvent is

1 forr € Vit
1/e forre V™’

together with the boundary conditions that ®*°'!(r) be
continuous across I' and that the associated normal
electric field takes a jump across the surface given by

F;otal(tint> _ d;gotal(text) )

By subtracting the known contribution of ®°(r) from
@' (r), we obtain Poisson’s equation for the remaining
reaction potential as

O () for r € Vit
Vi) = { (Ddnp(r) forre Vet - @)

The exact reaction potential ®™"(r) is continuous across
I'. Since F’(r) is continuous across I, the reaction field
must be entirely responsible for taking care of the jump
boundary condition, i.e.,

FY(E™) = e () + (e~ DEL() 3)

The major computational work of reaction field theory
lies in obtaining an exact or approximate solution of these
equations for the reaction potential. It should always be
kept in mind that even an exact or highly accurate
solution still represents only a highly simplified model of
the actual physical effects of solvation.

The SVPE method [12, 13, 14, 15, 16, 17, 18] provides
an exact solution of these reaction field equations. It is
defined by the potential ®™*(r) = ®VPE(r) that com-
bines two distinct contributions

SVPE ﬂSVl’E

OSVPE(r) = @7 () + P (1) . (4)

Here @/ (r) is a volume polarization potential that
accounts for the Laplacian of the reaction potential not
vanishing outside the cavity, as seen in Eq. (2). It is the
electrostatic potential associated with the volume
polarization charge density, f5YPE(r), defined by

svpE, v | O for r € VIt
P70 =

: 5

for r € V& (5)

The other term, ®° (r), accounts for the jump

boundary condition at the cavity surface, as seen in

Eq. (3). It is the electrostatic potential associated with
the surface charge distribution, ¢SVPE(t), that satisfies

e—1\ 1 | svpe
[f <e+1>2n9]0 ®

ﬂSVPE

—(5) 0+ B0 (6)

However, the exact SVPE method is laborious to
implement and time-consuming to run, because it uti-
lizes a volume polarization potential arising from a

VZ(Dtotal(r) _ —47'([)(1‘){
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discontinuous volume charge density. With a cavity
surface that is adapted to the detailed nonspherical
shape of a general molecular solute, this leads to difficult
integrations over just part of the full three-dimensional
space. Consequently, it is of interest to investigate ap-
proximate representations that omit any explicit volume
polarization charge density and that use only simple
surface charge or surface dipole distributions to generate
the reaction potential.

2.3 Approximate surface charge potentials

In many instances, the reaction potential is approxi-
mated by using only some surface charge distribution,
a(t), yielding a reaction potential ®°(r). Among other
simplifications, such approximation leads to a con-
venient alternative means of determining the associated
reaction field energy, &7, as a surface integral via the
secondary expression

ﬂ:/&h@@&) (7)

which involves the solute potential on the surface. We
emphasize again that it is possible to solve the reaction
field equations exactly in terms of a surface charge
density alone only if no solute charge lies outside the
cavity. In an unconstrained quantum mechanical
treatment of the solute, representing the reaction
potential through a surface charge density alone is
always an approximation.

Here we briefly review several ways that have been
suggested to achieve such approximate surface charge
distributions. These approaches have in common that
the surface charge density satisfies an equation of the
generic form

Ha(t) = W(t) . (8)

Here ¢ is the system operator, an integral operator
depending explicitly on the cavity definition. According
to the particular definition selected to determine the
cavity surface, the system operator may in turn be
implicitly influenced by the solute charge density, such as
in the isodensity construction described later. The RHS
function #(t) depends explicitly and linearly on the
charge density of the solute through the electrostatic
potential and/or electric field it generates at the cavity
surface. The effective system operator % and the
function #(t) associated with each of the approximate
surface charge methods examined in this work are
summarized in Table 1.

The SS(V)PE method originated with the demon-
stration [14] that all direct and indirect effects of the
volume polarization charge density on the exact SVPE
reaction potential can be exactly represented at all
points inside the cavity (which is the most important
region) by simulating the explicit volume charge
density in terms of an additional surface charge density.
Thus,

SS(V)PE

@ (r) = ®SVPE(r) forre VM |
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Table 1. Operators and func-

Function #/(t)

tions involved in approximate Method  Operator
surface charge methods
e—1\ 1
V)PE* ¥ — S+ D
SS(V) (E+1)4(J +59)
IEF* “‘Vloyy
e+1)2n
COSMO ¥
SPE g (= Ly
e+1/)2n

()=

(e
g ()
e
{

o
1)

#The A" operators for the SS(V)PE and IEF surface charge methods are formally equivalent to one

-1\ 1
another. They can also be equivalently written in factorized form as % {J — (E m 1) 3 J*} or as
€ I

e—1\ 1
; G (@
{] (e + 1) 21 J} 7

Later the accuracy of this representation of the reaction
field was verified numerically [15] and the idea was
further analyzed formally [20], but at that point the
method was still not very practical because it required
explicit construction of the volume polarization in
order to determine the additional surface charge
distribution that simulates it. The culmination, and
awarding of the SS(V)PE designation as a practical and
desirable method, finally came with a formal synthesis
[21] that allowed all the relevant surface charge density,
from whatever source, to be determined from a single
equation having the form of Eq. (8). The SS(V)PE
operator listed in the main body of Table 1, which is
one of several possible expressions as noted in the
footnote to Table 1, is in the previously recommended
[21] most symmetric form. While the different expres-
sions given for this operator are formally equivalent,
they may lead to slightly different results in practice
when the individual operators ., &, and " are each
separately defined over a finite grid of surface points.
Note from Table 1 that the SS(V)PE method only
requires determination of the solute potential on T,
rather than the more difficult to construct solute
normal electric field. An independent implementation
of the SS(V)PE method called implicit volume charge-
PCM has also been developed recently [18], and the
results compared to those from a related implementa-
tion [18] of SVPE.

The TEF method [23-26], also sometimes called IEF-
PCM, is given here in a simplified form that applies to
the special case of an isotropic solvent having zero ionic
strength. The TEF operator listed in the main body of
Table 1, which is one of several possible expressions as
noted in the footnote to Table 1, is in the form specified
in the original publications defining the method. Note
from Table 1 that the IEF method requires determina-
tion of both the solute potential and the normal electric
field on I'.

An alternative IEF method has also been suggested
[19], being derived with the motivation of eliminating the
solute normal electric field from the RHS of the original
IEF working equation (Table 1). More recently, it
was shown [22] that this alternative IEF method [19] is

formally equivalent to the SS(V)PE method. However,
the favorable representation of volume polarization in
the resulting equation [19] was not recognized at the time
of its derivation, that feature being evident only in the
SS(V)PE work [14, 15, 20, 21].

The COSMO [27-34] method is based on solving the
large e limit of Poisson’s equation exactly on the cavity
surface, then scaling the result to apply to the finite di-
electric case. It should be pointed out that the original
COSMO formulation [27-31] uses the slightly different
dielectric scaling factor of (¢ — 1)/(e + 0.5) rather than
the factor (¢ —1)/e from the “generalized” GCOSMO
version [32-34] that is adopted here and in C-PCM im-
plementations.The expression used here in Eq. (7) and in
most other reaction field formulations displays the re-
action field energy as a linear function of the surface
charge density, but in the COSMO method it is possible
to take advantage of the very simple and immediate
connection of the surface charge density with the solute
potential (Table 1) to generate other equivalent tertiary
surface integral expressions [27, 28, 32, 33] that contain
terms quadratic in the surface charge density. Note from
Table 1 that this method requires determination of only
the solute potential on I'.

A. Klamt, the developer of COSMO, has privately
informed us that he also arrived at the equivalent of the
SS(V)PE [21] (and alternative IEF [19, 22]) equation
some time ago by yet another approach. This previously
unpublished deduction proceeds as follows. Start with
the SPE equation given in Table 1 (and discussed more
fully later). Let oSPE(t) be the solution of this equation in
the limit of large e¢. Use this solution to reexpress the
function on the RHS of the SPE equation, leading to an
expression for ¢SPE(t) in terms of its large ¢ limit as

(el
2o

Now argue that the distribution ¢$°MO(t) which
satisfies #0COSMO(t) = —®”(t) provides a better descrip-
tion of the correct large € behavior than does 5PE(t).




Thus, it is interesting to inquire what happens to the
equation if ¢5PE(t) is replaced ad hoc by ¢COSMO(t).
A brief manipulation shows the answer is that oSPE(t)
becomes replaced by what is now recognized as
O.SS(V)PE(t).

Thus, we have three independent ways of arriving at
the SS(V)PE equation, each arising from a somewhat
different motivation. One modifies the exact SVPE
method to provide an optimal simulation of volume
polarization in terms of additional surface polarization
[14, 15, 20, 21], one modifies the original IEF equation to
eliminate the solute electric field in favor of the solute
potential [19, 22], and one modifies the SPE equation to
improve the behavior in the limit of large dielectric
constant. These different approaches each give valuable
insight into the full meaning of the SS(V)PE equation.

The most common and historically first method [35]
for determining the reaction potential is here called SPE,
and elsewhere PCM or sometimes standard PCM or D-
PCM (without charge renormalization). The SPE meth-
od follows immediately from pretending during solution
of Poisson’s equation that no solute charge density pe-
netrates outside the cavity. It can be shown using Gauss’
law that the total surface charge in this method is given by

5SPE _ _<€ - 1>pint _
€

If it were true that all the solute charge density was
enclosed by the cavity, then the RHS of this equation for
a>PE would involve the known total solute charge, p, in
place of the otherwise generally unknown p™. A number
of different ad hoc charge renormalization schemes have
been suggested that effectively alter ¢SPE(t) in a way that
forces this relation to p, but none are very firmly based in
theory and we do not recommend any of them. Rather,
we find the relation to be useful as a means to calculate in
practice the amount of solute charge penetrating outside
the cavity by turning it around to obtain

P *p+(f1) > 9)

Note from Table 1 that the SPE method requires
determination of the solute normal electric field on I'.
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If no solute charge penetrates outside the cavity then
volume polarization vanishes. In that event the
SS(V)PE, IEF, and SPE methods all become formally
identical to one another, and furthermore each supplies
the exact SVPE solution of Poisson’s equation, while the
COSMO method generally still differs and becomes
exact only in the limit of very large dielectric constant.

2.4 Approximate surface dipole potentials

Here we show that still other simple approximations to
the reaction field are possible through invoking a surface
dipole distribution in place of a surface charge
distribution. In this case the reaction potential is
approximated by using only some surface dipole
distribution, u(t), yielding a reaction potential ®*(r).
Such approximation leads to a convenient alternative
means of determining the associated reaction field
energy, &%, as a surface integral via the secondary
expression

- [ Etuore)
r

which involves the solute normal electric field.

For o(t) being some specified surface charge distribu-
tion, the electrostatic potentials ®°(r) and ®*(r) are equal
everywhere inside the cavity provided they are equal on
the inner face of the cavity. This is the case if u(t) is defined
to be the surface dipole distribution which satisfies

(j_%@> ():—%ya(t) . (11)

The reaction potentials ®’(r) and ®*(r) still differ on
and outside the cavity, but that may not matter much if
most of the solute charge is enclosed by the cavity. Thus,
a surface dipole formulation might be expected to give a
reaction field representation similar to that of the
corresponding surface charge representation. On the
other hand, use of a single surface dipole distribution to
generate the full reaction potential everywhere leads to a
discontinuity in the potential across the cavity surface

(10)

Table 2. Operators and func-

tions involved in approximate Method Operator ¥

Function Z(t)

surface dipole methods

e+ 1

IEF*—pn
1
COSMO—u I —-——9
2
2¢ 1
SPE?*-— — —
2 (E + 1) 2

2n

2e 1
(=) g
s (e+1)2nl+

SS(VPE-p 4 _ (E - 1) 1,

(1) 500
(5) (7 -52) o0
(1) G ) o
()50

(SD)G)

o+ (SN (La) (D (Lo) e
’ e+1)\2n e+1/)\2n” J2n "

The & operators for the IEF—u and SPE—u surface dipole methods are identical to one another.

They can also be equivalently written in factorized form as [f — <ﬂ>

g ()2

1 ¢ r 1 g p
e+1 E’OZ} (J 271@) or as
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that is not present in the exact reaction potential or in
approximate surface charge representations, which may
cause such approximate surface dipole methods to give
poorer results in practice. In any case, it is of some
interest to compare the two general approaches in
practice.

Use of Eq. (11) together with the defining equation
for each of the various surface charge distributions, a(t),
allows us to obtain directly the SS(V)PE—u, IEF—pu,
COSMO-—p, and SPE—u methods, which are surface di-
pole analogs of the SS(V)PE, IEF, COSMO, and SPE
methods, respectively. These approaches have in com-
mon that the surface dipole density satisfies an equation
of the general form

Lu(t) = Z(t) . (12)

The effective system operator ¥ and the function Z(t)
associated with each of the methods examined in this
work are summarized in Table 2.

Iti 1s mterestm% to note that if the surface distributions
pSSVIPE(£) and ¢ PE(t) are each evaluated from the same
solute charge den81ty, p(r), then it can be shown for-
mally that

5HSS(V)PE N gO.SPE
For example, this would happen in practice in the first
self-consistent-field iteration starting from the gas-phase
solute wave function. However, even though they
accidentally produce the same reaction field energy
when evaluated from the same solute density, the
S(V)PE

corresponding  reaction potentials o (r) and
o~ (r) of course remain different from one another.
Thus, in the course of self-consistently equilibrating the
reaction field to the solute density the SS(V)PE—u and
SPE methods will eventually produce different solute
charge densities and so eventually different reaction field
energies.

If no solute charge penetrates outside the cavity, the
SS(V)PE—u, IEF—u, and SPE—u methods all become
equivalent to one another, and furthermore each sup-

plies the exact solution of Poisson’s equation everywhere
inside the cavity, while the COSMO—u method generally
still differs and becomes exact inside the cavity only in
the limit of a very large dielectric constant.

3 Accuracy of approximate reaction field methods

Here we evaluate the relative accuracy of the SS(V)PE,
IEF, COSMO, and SPE approximate surface charge
methods and the SS(V)PE—u, IEF—u, COSMO—u, and
SPE—u approximate surface dipole methods through
calculations on several representative small solutes. By
accuracy, we mean in this context how close each of
these approximate representations of the reaction field
comes to the exact SVPE solution of the given model of
solvation. It is emphasized that this model only purports
to determine long-range electrostatic contributions to
solvation, and is not intended by itself to provide
quantitative determination of the entire free energy of
solution. That would necessitate further studies into
other issues within the model such as optimum cavity
size, especially for ionic solutes, and also independent
evaluation of further contributions to solvation, such
as those arising from cavitation, exchange repulsion,
dispersion, and specific solute—solvent interactions, like
hydrogen bonding, that are outside the scope of the
present work.

The results reported here for the SS(V)PE, IEF,
COSMO, SPE, SS(V)PE—u, IEF—u, COSMO-p, and
IEF—u methods were obtained from a newly developed
reaction field program [63] implemented in the HONDO
[64] electronic structure package. The exact SVPE results
used for comparison were obtained from the literature
[15] and from additional calculations using the program
described there [15].

Calculations are reported for the roughly spherical
H,0O and distinctly nonspherical CH3;CONH, neutral
solutes, and on the isoelectronic NO* and CN~ ions.
The restricted Hartree-Fock (RHF) method is used
throughout. The neutrals and the cation are each treated

Table 3. Solvation free energy

for representative solutes (kcal/  Method H,O CH;CONH, NO* CN~
mol), with a high dielectric
constant characteristic of water  Exact treatment of volume polarization
solvent SVPE? -8.59 —-10.86 —89.49 -67.40
Approximate surface charge methods
SS(V)PE —-8.58 -10.81 -89.47 -67.31
IEF —-8.58 -10.81 —89.41 —67.44
COSMO® -8.64 —10.88 —89.49 -67.31
(COSMO)® (-8.58) (-10.80) (—88.93) (—66.88)
SPE —-8.67 -11.13 -94.70 —-56.85
Approximate surface dipole methods
SS(V)PE— -8.53 —-11.01 -94.11 -56.74
IEF— -8.53 —-10.99 -94.04 -56.83
COSMO—° -8.59 —-11.07 -94.13 -56.74
(COSMO—)®  (-8.53) (-10.99) (-93.45) (—56.37)
SPE— -8.86 —-12.54 —-99.62 —49.81

2The SVPE results, which are taken from Ref. [15], all use 1202 surface points and layers spaced at

0.1 bohr intervals out to 4.0 bohr for H,O, CH;CONH,, and NO ™

, and out to 12 bohr for CN~

®The first line of COSMO results corresponds to the dielectric scahng factor (e — 1) /e, while the second
line of results (in parentheses) corresponds to the dielectric scaling factor (e — 1)/(e + 0.5)
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Table 4. Solvation free energy

for representative solutes (kcal/  Method H,0 CH;CONH, NO™ CN~
mol), with a low dielectric con-
stant characteristic of toluene Exact treatment of volume polarization
solvent SVPE? -3.93 -5.30 -52.21 -39.42
Approximate surface charge methods
SS(V)PE -3.92 -5.01 -52.21 -39.35
1IEF -3.89 —4.89 —-49.99 —43.85
COSMO® -4.77 -5.90 —-52.50 —-39.36
(COSMO)® (-3.89) (—4.78) (—43.37) (-32.49)
SPE -3.98 =517 —-55.26 -35.05
Approximate surface dipole methods
SS(V)PE— -3.95 -5.14 -55.07 -32.93
IEF— -3.80 -4.49 -52.73 -36.05
COSMO—° -4.79 -6.04 —-55.36 -32.94
(COSMO—p)®  (=3.91) (—-4.91) (—-45.77) (-27.16)
SPE— —4.15 —-6.04 —-58.30 —-28.43

#The SVPE calculations all use 1202 surface points and layers spaced at 0.1 bohr intervals out to 4.0
bohr for H,O, CH;CONH,, and NO™, and out to 12 bohr for CN~

® The first line of COSMO results corresponds to the dielectric scaling factor (¢ — 1) /¢, while the second
line of results (in parentheses) corresponds to the dielectric scaling factor(e — 1)/(e +0.5)

with the 6-31G** basis set [65] at the optimum gas-phase
RHF/6-31G** geometry, while for the anion diffuse
functions are also included through use of the
6-31+ G** basis set [66], at the optimum gas-phase
RHF/6-31 + G** geometry. The cavity is always defined
by an isodensity surface having p, = 0.001e/a3, the va-
lue of which has previously been found [16, 17] to be
nearly optimal for representing electrostatic effects of
solvation on a variety of small neutral solutes. The
surface integrations all used 1202 Lebedev points, which
is more than adequate to reach the precision reported.

Table 3 gives the electrostatic contributions to free
energies of solvation for the different solutes with a high
dielectric constant of 78.304 that is characteristic of
water solvent, and Table 4 gives analogous results with a
low dielectric constant of 2.379 that is characteristic of
toluene solvent. In both tables the first line of results is
obtained from the SVPE method, which provides an
essentially exact representation of volume polarization
effects within the simple dielectric continuum model of
solvation. The accuracy of various approximate reaction
field methods can be assessed by how close they come to
the exact SVPE results.

First we evaluate the results in Table 3 for a high
dielectric constant solvent. Among the approximate
surface charge methods, the SS(V)PE method fares ex-
tremely well, with errors less than 0.1 kcal/mol in all
cases examined. The IEF method also does extremely
well for all the solutes, as does the COSMO method
when used with the (e — 1)/e dielectric scaling factor.
With the alternative (e — 1)/(e +0.5) dielectric scaling
factor, the COSMO method does extremely well for the
neutral solutes and still reasonably well for the ionic
solutes, where the error rises to about 0.5 kcal/mol and
has the same sign for both the cationic and the anionic
solute. The SPE method does well for the neutral so-
lutes, with errors of about 0.1-0.2 kcal/mol, but fares
poorly for the ionic solutes, where the errors are about 5
kcal/mol for the cation and over 10 kcal/mol for the
anion, with opposite signs for the latter two errors.

Among the approximate surface dipole methods,
SS(V)PE—u, IEF—u, and COSMO-u with either di-
electric scaling all show behavior similar to one another
and to the surface charge SPE method just discussed.
That is, they all do reasonably well for the neutral so-
lutes but fare poorly for the ionic solutes. The SPE—u
method is still worse, with larger errors of 0.3 and 2.7
kcal/mol for the neutral solutes, 10 kcal/mol for the
cation, and nearly 18 kcal/mol for the anion.

Next we evaluate the results in Table 4 for a low
dielectric constant solvent. Among the approximate
surface charge methods, the SS(V)PE method fares ex-
tremely well, with errors less than 0.2 kcal/mol in all the
cases examined. The IEF method does quite well for the
neutral solutes, with errors of 0.2 kcal/mol or less, but
not so well for the ionic solutes, where the errors range
from 2 to over 4 kcal/mol. With the (e — 1)/e dielectric
scaling factor the COSMO method also does reasonably
well, with errors of about 0.6-0.8 kcal/mol for the neu-
tral solutes and less than that for the two ionic solutes.
With the alternative (e — 1)/(e + 0.5) dielectric scaling
factor the COSMO method still does reasonably well for
the neutral solutes, with errors of less than 0.5 kcal/mol,
but fares poorly with the ionic solutes, where the errors
range from 7-9 kcal/mol. The SPE method also does
quite well for the neutral solutes, with errors less than
0.2 kcal/mol, but not so well for the ionic solutes, where
the errors are about 3-4 kcal/mol.

Among the approximate surface dipole methods with
low dielectric solvent the SS(V)PE—u method does very
well for the neutral solutes, but shows large errors of 3 to
over 6 kcal/mol for the ionic solutes. The IEF—u method
does reasonably well for the neutral solutes with errors
up to about 0.8 kcal/mol and has an error of just 0.5
kcal/mol for the cationic solute, but has a significant
error of over 3 kcal/mol for the anionic solute. The
COSMO-u method with (e — 1) /e dielectric scaling does
reasonably well for the neutral solutes with errors near 1
kcal/mol, but shows large errors of 3 to over 6 kcal/mol
for the ionic solutes. With the alternative (e —1)/
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(e + 0.5) dielectric scaling the COSMO—u method does a
little better for the neutral solutes, with errors less than
0.4 kcal/mol, but fares poorly for the ionic solutes, with
errors of 6-12 kcal/mol. The SPE—u method does rea-
sonably well for the neutral solutes with errors of 0.2-0.7
kcal/mol, but has large errors of 6 kcal/mol for the ca-
tion and 11 kcal/mol for the anion.

In most of the methods considered the reasons for the
dielectric dependence of the errors are not obvious. An
exception is COSMO, where the larger errors found at
low dielectric constant are probably a reflection of the
fact that the correct dielectric dependence is more com-
plicated than can be described by multiplying the con-
ductor result, which corresponds to the high dielectric
limit, by any simple function of the dielectric constant.

Overall, we conclude that the SS(V)PE surface charge
method fares best among the approximate methods ex-
amined. It is very good in all situations, accurately re-
producing the exact SVPE results to within 0.1 kcal/mol
or less in high dielectric constant solvent and within 0.2
kcal/mol or less in low dielectric constant solvent. The
COSMO surface charge method with (e — 1)/e dielectric
scaling also performs well in high dielectric constant
solvent, with errors of less than 0.1 kcal/mol, and still
reasonably well in low dielectric constant solvent, with
errors less than 1 kcal/mol. All other methods con-
sidered show significant errors in some of the situations
examined and so cannot be recommended in general,
although several of them may be satisfactory for certain
special cases, especially for that of a neutral solute in a
high dielectric solvent.

4 Summary and conclusion

This work considered several extant methods for
approximate reaction field representation in terms of
surface charge distributions, including the SS(V)PE, IEF,
COSMO, and SPE methods, and discussed their formal
similarities and differences. Analogous new SS(V)PE—g,
IEF—u, COSMO-u, and SPE-u methods were also
introduced, each based instead on the use of a surface
dipole representation to give the same reaction field
inside the cavity as in the respective surface charge
method. All these methods can be regarded as approx-
imations to the SVPE method, which provides an
essentially exact solution of the simple solvation model
considered in terms of both surface charge and volume
charge distributions. If no solute charge penetrates
outside the cavity, the SVPE, SS(V)PE, IEF, SPE,
SS(V)PE—u, IEF—u, and SPE—u methods all give the
same result, while COSMO and COSMO-—p give the same
result as the others only in the limit of large dielectric
constant. In practice, a small but significant amount of
solute charge generally does penetrate outside the cavity,
and all of these methods then give different results.

The accuracy of each approximate reaction field
method was assessed by comparing numerical results to
those from the essentially exact SVPE method. Formally,
the SS(V)PE method is expected to provide the closest
approximation to the exact SVPE method, and this is
borne out in practice. With several representative neutral

and ionic solutes in both high and low dielectric solvents,
the SS(V)PE free energies of solvation are always within
0.2 kcal/mol of the SVPE results. The COSMO method,
at least when implemented with €/(e — 1) dielectric scal-
ing, also does very well compared to SVPE in a high
dielectric constant solvent, but has larger errors ap-
proaching 1 kcal/mol in a low dielectric constant solvent.
While several of the other approximate reaction field
methods considered perform satisfactorily for the special
case of a neutral solute in a high dielectric constant
solvent, they each show very significant errors in some
other situations and cannot be recommended in general.
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